Enhancement of Spray Cooling Heat Transfer Using Extended Surfaces and Nanofluids

نویسنده

  • Johnathan Stuart Coursey
چکیده

Title of Dissertation: ENHANCEMENT OF SPRAY COOLING HEAT TRANSFER USING EXTENDED SURFACES AND NANOFLUIDS Johnathan Stuart Coursey, Ph.D., 2007 Directed By: Associate Professor, Jungho Kim, Department of Mechanical Engineering Spray cooling is a powerful heat transfer technique in which an atomizing nozzle provides a flow of liquid droplets directed towards a hot surface. This dissertation explores two potentially powerful techniques capable of improving traditional spray cooling: nanofluids and extended surfaces. Nanofluids were experimentally studied in a pool boiling system to elucidate the underlying mechanisms of critical heat flux (CHF) enhancement. Dilute suspensions of nanoparticles were found to have a degrading or no effect on boiling performance. Greater concentrations (≥ 0.5 g/L) lead to modest (up to ~37%) increase in the CHF. The results were highly dependent on the working fluid/substrate combination, specifically wetting characteristics. Poorly wetting systems (e.g. water on copper) could be enhanced by nanofluids, whereas better wetting systems (e.g. ethanol on glass) showed no improvement. This conclusion was re-enforced when nanofouling caused by dryout of nanofluid was found to improve wetting as shown by a reduction in the advancing threephase contact angle. Interestingly, similar CHF enhancement was achieved without nanofluids using an oxidized surface, which is easily wetted with pure fluids. In fact, surface treatment alone resulted in similar CHF enhancement at ~20°C less wall superheat than required using nanofluids. Spray cooling was found to be adversely affected by the addition of nanoparticles due to changing thermophysical properties and/or nozzle clogging due to particle deposition. The addition of high aspect ratio open microchannels to the sprayed surface resulted in significant enhancement at all wall superheats and over 200% enhancement in the low temperature single-phase regime. The two-phase regime began at lower temperatures with microchannels, which lead to heat transfer enhancements of up to 181%. The onset of two-phase effects was found to be a strong function of channel depth. However, the onset of two-phase effects was found to occur at a temperature that was independent of nozzle pressure/mass flow rate. Therefore, nucleation and two-phase effects are likely triggered by the unique liquid distribution caused by the extended structures. Using high aspect ratio open microchannels, these mechanisms resulted in spray efficiencies approaching one, indicating almost complete utilization of the spray’s ability to absorb heat. ENHANCEMENT OF SPRAY COOLING HEAT TRANSFER USING EXTENDED SURFACES AND NANOFLUIDS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Investigation of Heat Transfer Enhancement in a Finned U-Shaped Heat Pipe of CPU Cooling System Using Different Fluids

This paper experimentally studies the heat absorption performance of a heat sink with vertical embedded heat pipes in the aluminum blade. The cooling system with embedded heat pipes distributes heat from the CPU to both the base plate and the heat pipes, and then transfer heat from fins to the Environment. The thermal resistance and heat transfer coefficient are evaluated for natural convection...

متن کامل

Spray cooling characteristics of nanofluids for electronic power devices

The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle v...

متن کامل

Analysis of Nanofluids in Liquid Electronic Cooling Systems

Nanofluids are solutions of a small fraction of suspended nanoparticles in a bulk fluid. Nanofluids have shown great promise as heat transfer fluids over typically used bulk fluids and fluids with micron sized particles. The nanoparticles do not settle in the fluid and do not cause clogging or damage to surfaces as with micron sized particles. In the current work we compare the performance of d...

متن کامل

Pool Boiling Heat Transfer Characteristics of Nanofluids by Sung Joong

Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by volume). Since CHF is the upper limit of nucleate boiling, such enhancement offers the potential for major performance improvement in many practical applications that use nucleat...

متن کامل

Nanofluids for Heat Transfer Enhancement – A Review

A nanofluid is a dilute liquid suspension of particles with at least one critical dimension smaller than ~100 nm. Research works so far suggest that nanofluids offer excellent heat transfer enhancement over conventional base fluids. The enhancement depends on several factors such as particle shape, particle size distribution, volume fraction of nanoparticles, temperature, pH, and thermal conduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007